Cavendish Terazisi
Newtotı’ın kütle çekim yasasına göre, kütleleri m1 ve m2 olan, birbirinden R kadar uzaktaki iki parçacık arasındaki kütle çekim kuvveti
Cavendish Terazisi.png” border=”0″ alt=”” width=”92 42″ align=”left” />
bağıntısıyla verilir. Bir orantı sabiti olan G’nin değerini bulmak için, kütlesi bilinen iki parçacık arasındaki çekim kuvvetini ölçmek yelerlidir. Ancak bu kuvvetin değeri çok küçük, örneğin birbirinden 1 cm uzaklıktaki 1 kg’lık iki kütle için yaklaşık 6,6×107 Newton (0,06 miligram) düzeyindedir.
Bu kuvveti ölçmek için Mitchell’in tasarladığı burulma terazisinden yararlanan Cavendish, tam ortasından ince bir telin ucuna asılmış yatay bir çubuğun iki ucıına kurşundan iki küre bağladı. Bu kürelere, gene kurşundan yapılmış iki sabit küreyi yaklaştırdığında, çubuğun kütle çekim kuvvetinin etkisiyle döndüğünü gördü ve bu dönme açısını ölçtü. Mitchell, burulma terazisinin salınım periyodundan yararlanarak, burulma terazisinin dönme açısıyla bu dönmeyi sağlayan kuvvet arasındaki bağıntıyı bulmuştu. Böylece, ölçülmesi oldukça kolay olan tek bir salınım periyodunun yardımıyla çok küçük bir değer olan kütle çekim kuvveti hesaplanabiliyordu. Cavendish de, evrensel kütle çekim sabiti olarak bilinen G’nin değerini hesaplayarak Newton’ın kütle çekim yasasını tamamlamış oldu.
G’nin değerinden yola çıkarak Yerin kütlesi de hesaplanabilir. Yer yiizeyindeki bir m kütlesine, evrensel kütle çekim yasasına göre GmM/R2 kuvveti etki eder. Newton’m ikinci hareket yasasına göre, m kütlesinin ivmesi g =F/m=GM/R2 olduğundan, serbest düşme ivmesi g, Yer’in kütlesi M, Yer yarıçapı R ve evrensel yerçekimi sabiti arasında
M=g R2/G
bağıntısı bulunur, g, R ve G’nin değeri bilindiğine göre, bu bağıntıyla Yer’in kütlesi ve yoğunluğu hesaplanabilir.